CSc 220: Algorithms Homework 1 Solutions

Problem 1: Assume that k, ϵ are constants with $k \ge 1$ and $0 < \epsilon < 1$. Also log denotes the logarithm in base 2, and ln the natural logarithm in base e. State which among A = O(B), $A = \Omega(B)$ and $A = \Theta(B)$ is correct for each pair of function below. Justify your answer. 2 points per question.

- $A = \log^2 n$ and $B = n^{1/100}$
- $A = n^k$ and $B = n^{\frac{\ln n}{\log n}}$
- $A = 5^n$ and $B = 4^n$
- $A = n^{\log^2 n}$ and $B = 2^{\log^3 n}$
- $A = 3^n$ and $B = 2^{n^2}$

Solution:

- $\log^2 n = O(n^{1/100})$. Actually we have that $\log^k n = o(n^{\epsilon})$ since $\lim_{n \to \inf} \frac{\log^2 n}{n^{1/100}} = 0$ (this can be seen by applying L'Hopital rule twice). In general any power of the log function (no matter how big) still grows slower than any δ -root of n (no matter how big δ).
- Since $\log n = \ln n \cdot \log e$ we have that

$$\frac{\ln n}{\log n} = \frac{1}{\log e} \quad \text{and} \quad B = n^{\frac{1}{\log e}}$$

Since $\log e > 1$ then $\frac{1}{\log e} < 1$ and there $n^k = \omega((n^{\log n})^{\ln n})$ since $k \ge 1$.

- $5^n = \omega(4^n)$ since $\lim_{n \to \inf} \frac{5^n}{4^n} = \lim_{n \to \inf} (\frac{5}{4})^n = \inf$ since $\frac{5}{4} > 1$.
- Remember that $2^{\log n} = n$, therefore $B = 2^{\log^3 n} = n^{\log^2 n} = A$. The two functions being equal, we have $A = \Theta(B)$.
- Note that $3^n = 2^{cn}$ where $c = \log 3$ which is a constant. So we are comparing 2^{cn} to 2^{n^2} , since $cn = o(n^2)$ we have that $3^n = o(2^{n^2})$.

Problem 2: For each of the following recurrences: (i) describe what kind of "divide and conquer" algorithm would give rise to such a recurrence; (ii) give asymptotic upper and lower bounds on T(n). Make your bounds as tight as possible and justify your answer. Assume T(n) is a constant for $n \leq 2$.

- $T(n) = 3T(n/3) + n \log n$ [3points]
- $T(n) = \sqrt{n}T(\sqrt{n}) + n$ [3 points]
- $T(n) = 2T(n/2) + \frac{n}{\log n}$ [4 points]

Solution:

- This is a divide and conquer algorithm that splits the input into 3 parts of equal size n/3 and recurs on all of them. The splitting and the recombining of the solution requires $n \log n$ steps. If we draw a recursion tree we have that
 - at level 0, the root, we pay $n \log n$.
 - at level 1, we pay $3 * (n/3) * \log(n/3) = n \log n n \log 3$

- in general at level *i* we pay $3^i * (n/3^i) * \log(n/3^i) = n \log n - ni \log 3$

Note that we have $\log_3 n$ levels. So the total cost is

$$\sum_{i=0}^{\log_3 n} (n\log n - ni\log 3) = n\log n\log_3 n - n\log 3 \sum_{i=0}^{\log_3 n} i = n\log n\log_3 n - n\log 3 \frac{\log_3 n(\log_3 n + 1)}{2}$$

Recall that $\log_3 n = a \log n$ where $a = (\log 3)^{-1}$. This implies

$$T(n) = an\log^2 n - \frac{a^2}{2a}n\log^2 n - \frac{a}{2a}n\log n = an\log^2 n - \frac{a}{2}n\log^2 n - \frac{1}{2}n\log n$$

setting $b = a - \frac{a}{2} > 0$ we have

$$T(n) = bn \log^2 n - \frac{1}{2}n \log n$$

which is $\Theta(n \log^2 n)$

• This is a divide and conquer algorithm that splits the input into \sqrt{n} parts of equal size \sqrt{n} and recurs on all of them. The splitting and the recombining of the solution requires n steps. To solve, substitute $n = 2^m$. Then we get

$$T(2^m) = 2^{m/2}T(2^{m/2}) + 2^m$$

and if we set $S(m) = T(2^m)$ we have

$$S(m) = 2^{m/2}S(m/2) + 2^m$$

If we build a recursion tree for this recurrence we have a tree of depth log m where each node at level j contains $2^{m/2^j}$ input values (starting with j = 0 at the root). Therefore at level j we must have a nodes such that $a2^{m/2^j} = 2^m$, i.e.

$$a = 2^{m - \frac{m}{2^j}} = 2^{\frac{m(2^j - 1)}{2^j}}$$

Each node does $2^{m/2^j}$ work. So each level does

$$a2^{\frac{m}{2^j}} = 2^{\frac{m(2^j-1)}{2^j} + \frac{m}{2^j}} = 2^m$$

work. Since there are $\log m$ levels, the total work is $T(n) = 2^m \log m$. Remember now that $2^m = n$ and therefore $m = \log n$, yielding $T(n) = \Theta(n \log \log n)$.

- This is a divide and conquer algorithm that splits the input into 2 parts of equal size n/2 and recurs on all of them. The splitting and the recombining of the solution requires $\frac{n}{\log n}$ steps. If we draw a recursion tree we have that
 - at level 0, the root, we pay $\frac{n}{\log n}$.

- at level 1, we pay
$$2\frac{n/2}{\log(n/2)} = \frac{n}{\log n - 1}$$

– in general at level i we pay $2^i \frac{n/2^i}{\log(n/2^i)} = \frac{n}{\log n-i}$

Note that we have $\log n - 1$ levels since we must stop at n = 2 (the recurrence is not defined for n = 1 since $\log 1 = 0$ and we cannot divide for 0). So the total cost is

$$\sum_{i=0}^{\log n-1} \frac{n}{\log n - i} = n \sum_{i=1}^{\log n} \frac{1}{i}$$

which is $\Theta(n \log \log n)$ since $\sum_{i=1}^{k} \frac{1}{i} = \Theta(\log k)$.

Problem 3: Given a set A of n distinct positive integers and another interger t, describe an algorithm that determines whether or not there exists two elements in A such that their product is exactly t. Prove that your algorithm is correct and analyze its running time. Full credit will be given to the fastest algorithm.

Solution: One trivial solution is to try all possible pairs of elements of A and see if their product equals t. This requires $O(n^2)$ operations. A faster algorithm would be to sort the set A and then search for the pair by comparing t with the product of the minimum and maximum element of A, and discarding either the minimum or the maximum depending on the result. More specifically consider the following algorithm

 $\begin{aligned} & \text{Find-Product}(A,t) \\ & i \leftarrow 1; \ j \leftarrow n; \\ & B \leftarrow \text{Merge-Sort}(A); \\ & \text{While } j - i > 0 \text{ Do} \\ & \text{If } B[i] \cdot B[j] = t \text{ Then Return True and Stop}; \\ & \text{If } B[i] \cdot B[j] < t \text{ Then } i \leftarrow i + 1; \\ & \text{If } B[i] \cdot B[j] > t \text{ Then } j \leftarrow j - 1; \\ & \text{End While } \\ & \text{Return False} \end{aligned}$

Let's prove first that this algorithm is correct. Consider the three possible choices inside the WHILE loop. If $B[i] \cdot B[j] = t$ then the algorithm correctly returns TRUE. If $B[i] \cdot B[j] < t$, then since the vector B is sorted then for any k such that i < k < j we have that $B[i] \cdot B[k] \leq B[i] \cdot B[j] < t$ so we can safely discard B[i] since it will never produce t when multiplied with any of the elements left in the array B. Similarly if $B[i] \cdot B[j] > t$, then for any k such that i < k < j we have that $B[k] \cdot B[j] \geq B[i] \cdot B[j] > t$ so we can safely discard $B[i] \cdot B[j] > t$, then for any k such that i < k < j we have that $B[k] \cdot B[j] \geq B[i] \cdot B[j] > t$ so we can safely discard B[j] since it will never produce t when multiplied with any of the elements left in the array B.

To analyze the running time, note that the WHILE loop is executed at most n times since at each executions either the algorithm stops or the difference j-i decreases by 1. The work inside the WHILE loop is constant, so the total cost of the WHILE loop is O(n). Therefore the running time of this algorithm is $\Theta(n \log n)$ since the sorting step with MERGE-SORT takes $\Theta(n \log n)$, which dominates the O(n) cost of the WHILE loop.