
CSc 220: Algorithms
Homework 1 Solutions

Problem 1: Assume that k, ε are constants with k ≥ 1 and 0 < ε < 1. Also log denotes the logarithm in
base 2, and ln the natural logarithm in base e. State which among A = O(B), A = Ω(B) and A = Θ(B) is
correct for each pair of function below. Justify your answer. 2 points per question.

• A = log2 n and B = n1/100

• A = nk and B = n
lnn
log n

• A = 5n and B = 4n

• A = nlog
2 n and B = 2log

3 n

• A = 3n and B = 2n
2

Solution:

• log2 n = O(n1/100). Actually we have that logk n = o(nε) since limn→inf
log2 n
n1/100 = 0 (this can be seen

by applying L’Hopital rule twice). In general any power of the log function (no matter how big) still
grows slower than any δ-root of n (no matter how big δ).

• Since log n = lnn · log e we have that

lnn

log n
=

1

log e
and B = n

1
log e

Since log e > 1 then 1
log e < 1 and there nk = ω((nlogn)lnn) since k ≥ 1.

• 5n = ω(4n) since limn→inf
5n

4n = limn→inf(
5
4 )n = inf since 5

4 > 1.

• Remember that 2logn = n, therefore B = 2log
3 n = nlog

2 n = A. The two functions being equal, we
have A = Θ(B).

• Note that 3n = 2cn where c = log 3 which is a constant. So we are comparing 2cn to 2n
2

, since
cn = o(n2) we have that 3n = o(2n

2

).

Problem 2: For each of the following recurrences: (i) describe what kind of ”divide and conquer” algorithm
would give rise to such a recurrence; (ii) give asymptotic upper and lower bounds on T (n). Make your
bounds as tight as possible and justify your answer. Assume T (n) is a constant for n ≤ 2.

• T (n) = 3T (n/3) + n log n [3points]

• T (n) =
√
nT (
√
n) + n [3 points]

• T (n) = 2T (n/2) + n
logn [4 points]

Solution:

• This is a divide and conquer algorithm that splits the input into 3 parts of equal size n/3 and recurs
on all of them. The splitting and the recombining of the solution requires n log n steps. If we draw a
recursion tree we have that

– at level 0, the root, we pay n log n.

– at level 1, we pay 3 ∗ (n/3) ∗ log(n/3) = n log n− n log 3

1



– in general at level i we pay 3i ∗ (n/3i) ∗ log(n/3i) = n log n− ni log 3

Note that we have log3 n levels. So the total cost is

log3 n∑
i=0

(n log n− ni log 3) = n log n log3 n− n log 3

log3 n∑
i=0

i = n log n log3 n− n log 3
log3 n(log3 n+ 1)

2

Recall that log3 n = a log n where a = (log 3)−1. This implies

T (n) = an log2 n− a2

2a
n log2 n− a

2a
n log n = an log2 n− a

2
n log2 n− 1

2
n log n

setting b = a− a
2 > 0 we have

T (n) = bn log2 n− 1

2
n log n

which is Θ(n log2 n)

• This is a divide and conquer algorithm that splits the input into
√
n parts of equal size

√
n and recurs

on all of them. The splitting and the recombining of the solution requires n steps. To solve, substitute
n = 2m. Then we get

T (2m) = 2m/2T (2m/2) + 2m

and if we set S(m) = T (2m) we have

S(m) = 2m/2S(m/2) + 2m

If we build a recursion tree for this recurrence we have a tree of depth logm where each node at level
j contains 2m/2

j

input values (starting with j = 0 at the root). Therefore at level j we must have a

nodes such that a2m/2
j

= 2m, i.e.

a = 2m−
m

2j = 2
m(2j−1)

2j

Each node does 2m/2
j

work. So each level does

a2
m

2j = 2
m(2j−1)

2j
+ m

2j = 2m

work. Since there are logm levels, the total work is T (n) = 2m logm. Remember now that 2m = n
and therefore m = log n, yielding T (n) = Θ(n log log n).

• This is a divide and conquer algorithm that splits the input into 2 parts of equal size n/2 and recurs
on all of them. The splitting and the recombining of the solution requires n

logn steps. If we draw a
recursion tree we have that

– at level 0, the root, we pay n
logn .

– at level 1, we pay 2 n/2
log(n/2) = n

logn−1

– in general at level i we pay 2i n/2i

log(n/2i) = n
logn−i

Note that we have log n− 1 levels since we must stop at n = 2 (the recurrence is not defined for n = 1
since log 1 = 0 and we cannot divide for 0). So the total cost is

logn−1∑
i=0

n

log n− i
= n

logn∑
i=1

1

i

which is Θ(n log log n) since
∑k
i=1

1
i = Θ(log k).

2



Problem 3: Given a set A of n distinct positive integers and another interger t, describe an algorithm that
determines whether or not there exists two elements in A such that their product is exactly t. Prove that
your algorithm is correct and analyze its running time. Full credit will be given to the fastest algorithm.

Solution: One trivial solution is to try all possible pairs of elements of A and see if their product equals t.
This requires O(n2) operations. A faster algorithm would be to sort the set A and then search for the pair
by comparing t with the product of the mimimum and maximum element of A, and discarding either the
minimum or the maximum depending on the result. More specifically consider the following algorithm

Find-Product(A, t)
i← 1; j ← n;
B ←− Merge-Sort(A);
While j − i > 0 Do

If B[i] ·B[j] = t Then Return True and Stop;
If B[i] ·B[j] < t Then i← i+ 1;
If B[i] ·B[j] > t Then j ← j − 1;

End While
Return False

Let’s prove first that this algorithm is correct. Consider the three possible choices inside the While loop.
If B[i] · B[j] = t then the algorithm correctly returns True. If B[i] · B[j] < t, then since the vector B is
sorted then for any k such that i < k < j we have that B[i] ·B[k] ≤ B[i] ·B[j] < t so we can safely discard
B[i] since it will never produce t when multiplied with any of the elements left in the array B. Similarly if
B[i] ·B[j] > t, then for any k such that i < k < j we have that B[k] ·B[j] ≥ B[i] ·B[j] > t so we can safely
discard B[j] since it will never produce t when multiplied with any of the elements left in the array B.

To analyze the running time, note that the While loop is executed at most n times since at each
executions either the algorithm stops or the difference j− i decreases by 1. The work inside the While loop
is constant, so the total cost of the While loop is O(n). Therefore the running time of this algorithm is
Θ(n log n) since the sorting step with Merge-Sort takes Θ(n log n), which dominates the O(n) cost of the
While loop.

3


